.- NASA-CR-193117

g - U PR —

. Transformmg 'AdaPT to Ada9x

s
- o
Stephen J. Goldsack Gl
_ o A, A. Holzbach-Valero R
- R - __ Imperial College, London, England /& i
Je 75/
7 7 Richard A. Volz b7, 75
: Raymond S. Waldrop -
—_) Texas A&M Umversnty
0 o T
o <+ .
- & p = April 8, 1993
} — M~
m U 0 ,
o c ~ —
— z > © Cooperatwe Agreement NCC 9-16
- Research Activity No. SE.35
- — 0
: ~
. m
— L
- e NASA Johnson Space Center
. \8 I T Engineering Directorate
— , 5 Flight Data Systems Division
O PP
. Zwuwn —
- > R
* T w-W0n N
- -4 .
0ocLc ——
woo
¥) b ' _
. Z o A
g @ @ - = I Cooet
- x 7.} E _
-0
L ©__©
e
~ C
— ~ —
- X
~ O O
Mm T C |
REE NEN
r4 <{
[! [@2]
m D C N I’ l' I'
) g|) [, :J]) NG > 4
: < = 3 I
we oo
- g g g - Research lnshfufe for Compuhng ond Information Systems
- Om) e

' Umvers:fy of Houston-Clear Lake

~ " TECHNICAL REPORT

[ot e e e e

[

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing
and Information Systems by Raymond S. Waldrop and Richard A. Volz of Texas
A&M University and A. A. Holzbacher-Valero and Stephen J. Goldsack of Imperial
College, London, England. Dr. E.T. Dickerson served as RICIS research
coordinator.

Funding was provided by the Engineering Directorate, NASA/JSC through
Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the
University of Houston-Clear Lake. The NASA research coordinator for this activity
was Terry D. Humphrey of the Systems Software Section, Flight Data Systems
Division, Engineering Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official policies, either express or
implied, of UHCL, RICIS, NASA or the United States Government.

| [T S T AN BVSRR I I

|| ppn
T

Transforming AdaPT to Ada9x
Task T8 Repont

NASA Subcontract #074
Cooperative Agreement NCC-9-16
Research Activity # SE.35

Period of Performance: May 1, 1990 - March 31, 1993

Submitted to
RICIS

Submitted by
S. J. Goldsack, Imperial College, London, England
A. A. Holzbacher-Valero, Imperial College, London, England
R. Volz, Texas A&M University
R. Waldrop, Texas A&M University

- Transforming AdaPT to Ada 9X

S.J.Goldsack. \. .\. Holzbacher-Valero.
Imperial College. London
R.Volz. R.Waldrop

Texas ALM University

{

- April 5. 1993

— Abstract

This paper constitutes report RS for NASA subeontract #071 Cooperative \zreement
NCC-9-16. Tt describes how the concepts of AdaPT can be transtormed into programs using
the object oriented features proposed in the preliminary mapping for Ada9x. Emphasising,
as they do. the importance of data types as units of program. these features match well with
i the development of partitions as translations into Abstract Data Types which was exploited
g in the Ada83 translation covered in report R3. By providing a form of polymorphic type. the

Ada9x version also gives support for the conformant partition idea which could be achieved
— in Ada83 only by using (NCHECKED.CONVERSION.
The paper assumes that the reader understands AdaPT irself. but briefly reviews the

translation into Ada83, by applying it to a small example. This is then used to show how
the same translation would be achieved in the 9x version.

- It is important to appreciate that this paper does not use. or even discuss in any detail,

— the distribution features which are proposed in current mapping. as those are not well
matched to the AdaPT approach. Critical evaluation and comparison of these approaches
Is glven in a separate report.

-

L]

E

ORIGINAL PAQE IS
OF POCR QUALITY

P
i

{

{

L]
I

:

!
i

{

1 Introduction

In report R3 of the present project. a stndy was presented of the translation of an \daPT
program into executable code in \da¥3. Since that report further work has been done on this
-nbject, which has been presented in an up-dated version of that report.

An original aim of the project was to develop further the AdaPT proposal with the intention
of influencing, or at least helping to guide the mapping team in developing an approach to
distribution for Ada9x. Since that time, the mapping team has issued their language proposals.
including an annex which supports the distribution of Ada 9X programs. Important changes
proposed in Ada which affect this project are:

e support for a form of inheritance through tvpe extension. based on an adaptation of the
Adaz3 concept of the derived tvpe. and

e theintroduction of a model for distribution through which Ada programs can be developed
in a standard way for distributed targets.

The present report describes the extension of the work in T3 to cover \da9x. To a large
extent the changes to Ada are upwards compatible with Ada33. so programs developed using
our translation of AdaPT into Adas3 will also provide correct Ada9x programs. However. in
several wayvs the proposals for the mapping give enhanced support for AdaPT. and simplify the
translation.

e Record aggregation, as used to translate partitions with “withed” packages into AdaS3.
is more directly provided by the use of type derivation in the proposed new version of the
language.

¢ .\ form of polymorphism. permitting execution time binding of procedure calls to alterna-
tive versions of the procedure definition enables conformant partitions to be more directly
supported. without the use of unchecked conversion.

The Ada83 translation makes extensive use of the notion of an abstract data type to translate
the partition. The importance of such structures is greatly enhanced in Ada9x. since the model
for object oriented structuring using inheritance is mainly developed around the data type. It
is therefore straightforward to relate our Ada83 translation approach to one for the proposed
form of Ada9x. The present paper aims to show how this works, and how the AdaPT notions
can be supported in the proposed form of Ada9x.

The distribution features of the new language mapping also turn around a concept of a
partition. This is not, however, the same as the partitions in AdaPT, and they are not used
in the present translation. For a comparison of the two approaches to distribution, please see
report R2R which makes a detailed comparison of the approaches, and provide a critique of the
mapping proposal.

P {

2 The Example

Thronghout this paper. the features of AdaPT and their translations into Adax3 and Ada9x will
be illustrated by outlining a program to simulate the children’s game ot ~battleships™. This i
2 game for two players. Each has a squared board representing a naval battle area. the squares
being identified by rhe coordinates (n.m) where n and m are integers. LCach plaver arranges. .l
the start of the game. a certain number of ships on his board. .\ ship occupies one. two. three
or four adjacent squares dependent on the kind of ship. (A battleship. for example. occupies
four squares.) Details of the number of ships. the size of the board etc. are not necessarv for
the purposes of this paper.

Having selected rhe disposition of their ships. these boards are fixed data. Plavers now fire
in turn at their opponents’ boards. .\ move consists of selecting a square and announcing the
choice to the opponent. who replies with the information “missed™." hit™. or “sunk”. the last
situation arising when all the squares occupied by a ship have been hit. Fach plaver now keeps
a record of what he has discovered about his opponent’s board by maintaining an image of that
board. initiallv blank. on which he gradually fills in information gained by his earlier shots.
The winner is the first to sink all his opponent’s ships.

In the simulation. players are modelled by partitions which request inputs from and report
the results to the console. It is convenient to introduce a referee. who keeps the boards with
the fixed data of both players. receives the shots and reports on their effects. The complete
program therefore consists of three virtual nodes, two derived from a common type. It would
be possible to configure the program on a network of one two or three physical processors. This
arrangement is illustrated in figure 1.

-\ variant of the program would be a situation in which one of the playvers was a real person.
while the other was the computer itself. In the second version the ~pseudo-plaver® would
have the same interface as the real plaver who interacts via the kevboard and screen. but the
implementation would be different. This will provide an example of a conformant partition.

2.1 Public

As explained above. a public unit allows the sharing of definitions of tvpes. constants and
services between nodes or between partitions within nodes. To this end, it has the following
features: it is identical to a package. except that it is not allowed to have variable state. When
appropriate, the defined types may be private. A public unit may introduce type definitions
with associated operations, forming an Abstract Data Tvpe. It may have with clauses for other
public units, but for no packages.

In the example the following public unit provides the types for parameters of calls between
the partitions.

public Shared_Types is

U

{

il

(1

v

Referee

Playert
Board

Player2
Board |

Player! Player2

Opponent Opponent
Board Board

Viove Mov?
: Result

Resuit

\.

Player Player

Figure 1: arrangement of the plavers and referee.

-- This public unit provides the types to be shared between the
-- partitions Player and Referee.

type T_Turn is ..
type I_Board is ..
type T_Move is ..
type T_Result is ..
end Shared_Types ;

2.2 Partition

A partition is a new library unit capturing the concept of a virtual node type and whose
instances have the properties required of virtual nodes. One can recognise in the partition a
restricted form of class as found in object oriented languages.

A partition declaration defines a type which structurally speaking is similar to a package.
[t can be noted that a partition is just like a package in Ada except for certain constraints.
Like a package, it has a specification part and a body. Its specification defines the interface
to the partition instances in terms of subprograms and tasks which are made available for use
by its clients, while its body encapsulates its implementation. A partition may have an active
“thread of control”, in which case it contains one or more tasks. Unlike a package no type or
object declarations are allowed in a partition specification to avoid remote memory accesses
and dynamic type checking.

The following is the specification part of the partition “Referee” to represent the referee in

|

{

a battleships game.

with Shared_Types :
use Shared. Types -
partition Referee is

-~ Referee keeps copies of the boards of the two players.

-- Each player has to initialise his/her board. Once this is
-- done, Referee provides alternating access to the boards.
-- In this way, each player plays a position on his/her

-~ opponent’s board in turn until the game is over.

-- To know when the game is finished, a unit can call

-- Wait_for End which #ill not return control until the game
-= 1is over.

procedure Copy_Board (Owner - in T_Turn: Board : in T_Board) :
function Play (Who = T_Turn: Move . T_-Movej return T_Result :
procedure Wait_for_End

end Referee ;

The program would not be complete until the body defining the implementation is provided.
However, as in standard Ada. this specification is enongh 1o allow the definition of partitions
which depend on the referee.

This is followed here by the specification of a player:

with Referee |
Shared_Types
use Shared_Types ;
partition Player (A_Referce : Referee ; A_Turn : T_Turn) is

-- Player simulates the behaviour of a player. After having
-~ its environment variables set up (through the initialisation
-- parameters), it thinks and plays until the game is over.

end Player :

The name associated with a partition declaration does not represent. as would be the case
in a package declaration. a single instance of the object with this definition in the library. It is
the name of an access type bound to an anonymous partition type.

The declaration:

with Referee
Shared_Types ;
use Shared_Types ;
partition Player (A_Referee : Referee ; A.Turn : T.Turn) is ...

can be understood to mean:

ORGINAL PAGE 15
OF POCR QUALITY

i

sith f?rfrrff .
~hared_Types .
ise Shared_Types :
rartition type Player_Type [A_Referee - Referee : A_Turn : T_Turnj is ...

-- the declaration of an anonymous package type
wvpe Player is access Player_ Type :

Partition variables may be declared in the declarative parts of partitions or nodes. Such a
variable is an access variable and is initially null. .\ partition instance is created bv a new
allocator. as is usual for an object referenced by an access tvpe in Ada.

A_Player o Player = new Player PARTITION (The_Referee , The.Turn) :

Note that the syntax is exactly that of the new allocator in Adax3: however, since the 1vpe
ot the constructed object must be given. the attribute 'PARTITION was introduced to eive 1he
hidden tvpe of the player objects. The brackets following the kevword PARTITION contain the
actual parameters matching the formal parameters defined in the declaration of the partition.
and giving the initial configuration of the system.

This allocator may not be executed by a partition. Partition variables in a partition can
receive values only by assignment from instance variables which are created at the node level.
Preventing the creation of partitions by partitions in this way guarantees that the new units
are not misused as units for software development displacing the package concept as the main
modularity feature in a normal Ada program.

-\ programmer is encouraged to use normal .Ada style in developing a partition. .\ partition
or its body may have a context clause “withing” one or more normal \da packages. If these
packages have “state”. then they are replicated with each instance of the partition which “withs™
them. If these in turn “with™ further packages. then those too are replicated. The complete
dependency graph of the partition up to but not including any other partitions which may be
“withed”. is replicated with cach instance. The partition unit with this set of packages on which
it depends is sometimes referred to as the closure of the dependency graph. In fact. the word
partition is overloaded, being used informally to mean the partition closure, the set of all the
nits appearing in its dependency graph except other “withed™ partitions while serving also as
the reserved word identifying the interface unit.

In the example, it would be natural to provide a package defining the data structure in which
a player records his knowledge of the opponent’s board. Since that hoard will be examined in
detail when choosing the next move, the package will provide also the algorithm for selecting
the next move. There will, therefore, be a package Boards defined as follows:

with Shared_Types ;
use Shared_Types ;

cackage Boards is

-- This package provides to the player:
—-- the definition of his/her board by the user,
-= operations to manage a view of his/her opponent’s board.

-- Definition by the user (the player) of his/her ships’
-- arrangement in the player’s board.
function User_Definttion return T_Board |
-- Operations based on the player’s view of his/her opponent board.
procedure [nit.Opponent ;
procedure Update 1 Tried_Move :in T_Move: Result © in T_Result):
function Choose_ove return T_Move :
z=nd Boards ;

package body Boards is

-- Declaration of the unique non-constant state item appearing
-- in this package.
nponent_Board

-~ Implementation of the services provided by the package.
function [“ser_ e finttion return [_DBoard is

end Boards ;

As explained above. this package. being “withed™ by the body of the plaver partition. will
he replicated with each instance of the player. so each will have his own copy of the board data
structure.

A plaver is an active partition: it is implemented with a task in its bodv. It has a with
clause for the Boards package. and declares an instance variable for the referce.

anth Boards :
partition body Player (A_Referee © Referee ; A Turn . T.Turn) is

The_Referee . Referee 1= A_Referee .
My-Turn © T_.Turn = A_Turn :

task Life ;
task body Life is
My_Board : T.Board :
Nezt_Move : T_Move
Result : T_Result ;
begin
-- Initialisation of the two boards (the player’s board and
-- the view of the opponent’s board).
My_Board := Boards. User.Definition ;
Boards.Init_Opponent ;
-- Initialisation of the referee’s copy of the player’s board.
The_Referee. Copy_Board (My_Turn , My.Board) ;
-- Life cycle of the player.

~3

l!‘
il

(

20p
Vert. Move 1= Boards.Choose_)Move
Result 1= The_Referee Play (My_Turn . Nert_Movej
<xit when (Result = Fad_of Game) :
2oards. Update ¢ Nert_Move . Result) |
end ioop;
end [ife ;

end Player

In this way. a partition provides rhe unit of distribution. aggregating closelv-cooperating librarv
units and exporting an interface to the rest of the program. so each partition can be writren
in familiar Ada stvle. Finallv, we note again that since partitions are units of distribution.
the svstem designer must be conscious that inter-partition communication is potentially muen
<lower than intra-partition communication.

2.3 Nodes

Nodes are intended to provide the system designer or programmer with control over confieura-
ton. the wayv in which partitions are allocated in the network. Structurally speaking. thev are
very similar to partitions. .\ node possesses a specification which provides the node interface
and has to fulfill the same constraints as a partition specification. It also has a bodv that
implements the services offered by the node. As with the partition. the declaration of a node
introduces an access type name bound to an anonymous tvpe. Node variables can only appear
in the declarative part of a node. Node instances can be created by other nodes through the
execution of the new allocator. Unlike a partition. a node can create other node instances as
well partition instances. If this distinction were not made. then a programmer could develop a
hierarchy of partitions. violating the intention of their introduction.

There is a one to one mapping between node instances and executable binary modnles.
(‘ommunication between node instances is alwavs via message passing. One node. identified by
A pragma distinquished. is selected by the programmer as a ~distinguished™ node. This node is
logicallv the main program and is created. elaborated and started bv the operating svstem a1
system initialisation. Others are created and started by other nodes.

[n the design of AdaPT it was felt that, despite their structural similarity to partitions.
the purpose of the node. aggregating elements of a program which will form a single binarv.
was sufficiently different from that of the partition that it was sensible to introduce it as an
independent concept.

Here. for simplicity, the whole program will be assembled for execution in a single machine.

so there is one node which constructs the complete program.

node A_Single_Main is
pragma distinguished ;

ORIGINAL FAQE 1§
OF POOR QUALITY

{

‘,“
i

end A_Single_Man ;

th Referee |
Player .
shared_Types :
use Shared. Types :
node body A_Single_Main is

The_Referee : Referee := new Referee PARTITION -
Playert : Player = new Player PARTITION (The_Referce . Turnl)
Player2 @ Player := new Player 'PARTITION (The_Referce . Turn2)

begin
-~ The Referee, Playerl and Player2 will run concurrently until
-- the end of the game. The node will not terminate until all
-- library-level tasks in the three partitions have terminated.
null:

end A_Single.Man ;

The values Turnt and Turn? are literals of tvpe T_turn.

2.4 Conformant Partitions and Conformant Nodes

[n the design of the AdaPT extensions of Ada. it was felt that the needs of reconfiguration
and error recovery frequently require a switch of mode. in which a set of operations is replaced
by others with the same interface. but differently implemented. Thus. what was required was
the ability to define partitions of the same logical type. but differently implemented. A mode
change could then be obtained by assigning a different value to some instance variable in the
caller. This is a form of polvmorphism not available in Adas3. It is provided in AdaPT by a
concept of conformant partitions.

A set of conformant partitions allows different implementations of a partition to present a
common interface (i.e. be of the same tvpe). This provides a basis for managing mode changes
and fault tolerance. We do not propose to expand on this idea here. but the example can
be extended to allow a mode switch. in which the partition representing one of the players
plavs the game itself, instead of just providing an interface for a human plaver. Having defined
a partition type in a partition declaration this can be used as the prototype for one or more
conformant “peers” with the identical interface specification by writing a declaration such as:

partition Automatic_Player (A_Referee : Referee ; A_Turn : T_Turn) is Player ;

This states that the external properties of the Automatic_Player are exactly those of the Player.
However, the body might be entirely different. For example:

CRMGINAL Faqr 1S
OF POOR QUALITY

[

|

{

partition body Automatic_Player {_Referce - Referee . A_Turn = T.Turn) is

—-- This player is the computer.

end Automatic_Player -

This alternative form of plaver might be selected at system construction if the human plaver
wished to play against the computer rather than against another human. The following gives
an outline of the code to construct a single node in this more general case.

with Referee |
Player .
Automatic_Player .
Shared_Types .
User_Interface :

use Shared. Types :

node body A_Single_Main is

The_Referee : Referee :
No_more_games |
{fuman_Players . BOOLEAN :
Turn_of_Playert : T_Turn :
Playert .

Player2 . Player :

procedure [nit_(Game is ..
-- Initialises interactively the values of No.more_games,
-— Turnof Player! and HumanPlayers using User.Interface.

procedure The_ Other_Turn (A.Turn . T_Turn) return T_Turn is ..
-- From a player’s turn, it computes the turn corresponding to
-- the other player.

task Life :
task body Life is
begin
loop
Init_(Game
exit when No_more_games ;
The_Referee := new Referee PARTITION -

-— We assume that the first player is always human.
Player! = new Player PARTITION (The_Referee . Turn_of_Player!) :
if Human_Players then

-- The two players are human.
Player2 := new Player 'PARTITION
(The_Referce , The Other_Turn (Turn_of Playerl)) ;
else
—— The second player is the computer.
Player2 := new Automatic_Player 'PARTITION
(The_Referee , The Other_Turn (Turn_of Playerl)) ;
end if ;
The.Referee. Wait_for_End ;
end loop;
end Life ;
end A.Single.Main ;

10

)

3 Translation of AdaPT to Ada83

s most aspects of our suggested mapping between AdaPT and Ada0x have their roots in
the rranstormation of AdaPT into Adas3. it is useful 1o review the kev ideas of this latter
transtormation. This section describes how this translation can be formulated for cach of the
AdaPT units. .\ more detailed discussion of this translation process mav be found in the revised
report for task T3 of this project.

3.1 The public: a shared repository of definitions.

Publics present no problem for transformation: they are replaced by normal \da packages.
restricted only in that thev possess no variable state.

3.2 Partitions

The partitions and nodes are structures with features similar to 1hose which package tvpes might
have if they existed in the language. The basis of the translation which we have developed into
Adax3 depends crucially on the fact that they are tvpes.

Partitions in AdaPT are types whose instances can be thought of as abstract state machines
(ASMs). They possess persistent state attributes encapsulated within their bodies. while pre-
senting in their interfaces sets of operations which can modify their states. Thev mayv be active
or passive. In the first case they have one or more internal tasks which can cause changes of
state to occur due to the partition’s own actions. If the partition is passive. however. its state
changes only as a result of invocation of the subprograms in the interface.

To create a program in Ada83 whose behaviour is equivalent to the effect of an AdaPT
partition we have shown (informally) that for every partition tvpe there is an abstract data
type (ADT) whose instances have the equivalent effects to those of the partition instances. The
full account of the transformation will not be given here. [Lssentially it implies the collection
of all the state elements of the partition (and all its tasks if it is active) into a state record.
This record is now a data type which is exported as a private access tvpe. Client program units
can declare instances of this type as they would have declared instances of the partition. The
procedures and functions declared in the partition unit are modified to take an extra parameter
of the access type. which is passed with the data in every call.

In AdaPT a partition unit can “with” other library units. In our translated version of such
a complex partition, these are also translated to abstract data types defining state records. For
each such “withed” package, an instance of that record is declared within the state record of
the partition which has the relevant with clause among its context clauses. Thus the original

11

structure of the partition as a tree! of “withed™ unirs is preserved in the translation?.

Here. for example. is the translation of the complete Plaver partition including the Boards
package which in this case forms the whole of the dependency graph.

with Shared_ Types
use Shared_Types
package Boards_ADT is

-- This package provides the player with an instance of the board type:
== In this he maintains a record of all he has learned of his

-~ opponents’ ship arrangement. This package also provides the

~= operation to construct the player’s own battle arrangement

- to send to the referee. Also the operations to actually

=~ conduct the game by selecting a move and recording the result.

type Boards is private;
-~ Definition by the user (the player) of his/her ships’
—= arrangement in the player’s board.
procedure ['ser_Definition B :in out Boards : The_Board - out T.Board) :
-~ Operations based on the player’s view of his/her opponent board.
procedure [nut_Qpponent B - in out Boards) :
procedure Update (B - in out Boards . Tried_Move - in T_Move . Result - in I_Result):
procedure “hoose_Hove 1B :inout Boards; The_Move - out T_Move) :
private
type Boards is
record

Opponent_Board : ... -- as defined in the body of Boards.
end record ;

-~ This is the state record for board instances.
end Boards_.ADT :

There will be additionally a Create operation if there is an initialisation part in the ASM]
and a Destroy operation if there is a task in the state record.

We come now to the translation of the partition unit itself. This exports a private access
tvpe. and the definition of the state record can be deferred to the bodv. Since the private tvpe
cannot be instantiated by a client with the new allocator. it is necessary to introduce a ¢ reate
operation to provide for its effect. It is important to note that. even if the access tvpe is not
private, there is a difference between executing a new allocator in the client. and in the bodv
of a Create operation which is part of the ADT. This concerns the location of the stored record
in a distributed system. In the latter case it is correctly stored on the heap of the unit owning
the operations. For symmetry there is again also a Destroy operation.

with Referee_ADT ,

' The general form of the dependency graph is an acyclic directed graph. This gives difficulties in the trans
lation. Such a graph can be modified by a preliminary program transformation to a tree structure. We do not
consider these details here.

?We shall see later, when considering the type extensions supported in Ada9x how this feature can be inter-
preted as inheritance with type extension.

12

Shared_Types
use Shared_Types_ ADT :
package Flayer . ADT is

-- Player simulates the behaviour of a player. After having
-- 1ts environment variables set up {(through the initialisation
-- parameters), it thinks and plays until the game is over.

type Player is private;
-- Create simulates the operator new for the partition
-- creation and supports the initialisation parameters.
procedure C'reate (P :in out Player:
A_Referee @ in Referee. ADT.Referee :
ATurn in T.Turny :
-— Destroy provides the complementary operation to Create.
procedure Destroy (P - in out Player) :
private
type Player_State ;
type Player is access Player_State :
end Player . ADT ;

with Boards_ ADT -
package body Player . ADT s

task type Life_Type is
-- An extra entry is added to give this task access
-- to the state of a Player’s instance. The entry will
-- be called by the Create operation.
entry Set_Initial (P :in Player).
end Life_Type ;

type Player_State is
record
-- An instance of the Boards_.ADT’s state.
B Boards.ADT.Boards :
—-- State variables derived from the body of Player,
The_Referee : Referee_ADT.Referee :
My Turn © T_Turn ;
T Life.Type ;
end record
-- Note how the state record of the player is now composed with
-- that of the foards package.

end Player.ADT ;

The result is a program which is quite well structured in Ada83 terms. ADTs have been
much discussed as Ada structuring features. To write such an ADT directly is quite feasible.
However, the result is not as neat as the AdaPT partition itself, and since ADTs can be written
which are more general than the partition, a programmer must observe some restrictions in
writing it. Nevertheless the use of a complex data type as a partition (or virtual node) in a
distributed system is an option which is available in Ada83 and has been largely overlooked by
workers (including ourselves) who have previously sought appropriate ways of writing virtual
nodes and composing distributable Ada programs.

13

Ve consider. however. rhat rhe construction from first principles of a neatly structured ADT
To represent a large partition is not easy, and the direct definition of the large data structures
imvolved may not always seem natural to the programmer. One solution might be to retain
AdaPT as a methodology. producing the translation by hand or nsing a pre-processor. In a
later section we shall see. however. that in .\da9x. the use of derived tvpes will provide a natural
way ro develop partitions for distribution.

3.3 Nodes As Configuring Units

AdaPT introduces a separate concept of a node whose destiny is to become the source code
representation of a binary executable unit to run on a machine in the network. .\ node differs
little in its structure from a partition and it too can be converted to an ADT. In our translation.
however. it is supplied with a main procedure which creates and elaborates the node instance
when it is invoked during svstem start-up by the operating svstem by a command from the user
if it 15 the distinguished node. or by another node if it is not*.

3.4 Conformant Partitions and Nodes.

(Conformance is a tyvpe of polymorphism not supported in Ada x3. Objects of the same type
are differently implemented. Since an access variable can only be bound to objects of one tvpe.
it is necessary to use the tyvpe conversion facility offered by the generic function UNCHECKED
CONVERSION to achieve the effect. It is however possible to do so in a controlled way. hidden
in a procedure body. The technique was explained in the T3 report. and we do not propose to
describe 1t in detail here.

4 AdaPT and Ada9X

4.1 Public Units

As in the case of Ada83. publics are presented in Ada9x as packages which having no variable
state. The mapping proposes to introduce a pragma PURE to label a package which has
these properties. It will not change the meaning of the program. but will make possible the
construction of a tool to check that the package has the intended property, and also to check
at compile time that attempts are not made to share packages not so labelled. The public unit
given in section 2.1 will therefore be rendered:

package Shared_Types is
pragma PURE;

*An account of the work on partition to partition and node to node communications is given in the extended
T3 report

14

-=- This public unit provides the types to be shared between the
~- partitions Player and Referee.

type [_Turn is .
type [_Board is ..
type T_Yove is ..
type {_Result is ..
end Shared_Types

4.2 Partitions

The reports of the Ada9x mapping team describe at some length their ideas for developing an
object oriented style of Ada programming by extending the notion of the derived tvpe. There
15 little doubt that such features will provide a useful way of developing the kind of structures
required for the ADTs that we use as partitions. It is of some interest that those features of a
package which are inherited by a derived tvpe in a descendant are precisely the features (the
ivpe and its operations) which form an ADT.

As noted in the section on partitions. the “withed” package associated with a partition
closure. which is replicated with each instance of the partition. has an effect ~quivalent to tvpe
extension in a derived tvpe.

To keep the account of the Ada9x form of the translation as simple as possible. we present
first a purely schematic outline of a partition in which a partition unit ' “withs™ a package B
which itself “withs™ a package A. (see figure 2.)

(‘onsider first the packages on which the partition depends. Thev consist of the package B
which "withs™ package \:

package 4 is
procedure P ;

end . ;

vath L

package 3 is
procedure PR :
end B

In Ada83 we would construct the ADT corresponding to A and then make the ADT for B
exporting type for the state record for B containing the state variables of B together with an
instance of the tvpe exported by the transformed A.

In Ada9x. the translation can be done (of course) in exactly the same way, since the Ada83
programs will be valid in Ada9x. However, the aggregation of the states can receive language
support by the use of record extension. First we make ADTs corresponding to the separate
packages A and B and then form the aggregated state by type derivation. To make such
extension legal. the type to be extended must be declared to be a “tagged” type.

15

with B
partition C

| !

with A
package B

T

| package A

Iigure 2: Schematic of the partition with its dependency graph.

package A.1DT is

type A_State is ..

procedure P4 (1. :inout .1_State);
end A_ADT

package B..1DT is
type f_State is tagged private;
procedure PB (VB :in out B_State) ;
private
type B_State is ...
end B_ADT :

with A_ DT .
B.ADT :
use A_10T,
B_ADT
package Full B_ADT is
type Full_B_State is new B_State with private;
procedure PB (1'B : in out FullLB_State) ;
private
type Full_B_State is new B_State with
record
VA © A State ;
end record ;

-- This defines a state composed by B_.State and A_State.
end B.ADT

Note that it is the type exported by package B which is inherited and extended; package A

16

provides a state type which is compounded into the derived tvpe. The operations such as P\.
oxported by package A are not available as operations callable by nsers of the derived 1vpe:
however. nor were the operations exported by the package .\ available ro users of B when B was
a package. In both cases these operations were accessible for calling from the bodies defining
the operations in the interface.

Next we must form the partition. Here the process is exactly the same. except that the
partition exports an access tvpe to provide the tvpe representing the partition. The partition
(" is first converted to an ADT on its own. and then the full partition is created by inheriting ¢’
and extending its tvpe by aggregating its state with an instance of B. We should note. however,
that the procedures created in the partition have variables of the state record type as arguments.
It is a feature of the new Ada that these can be called with actual parameters of access tvpe.
provided thev are given the the new mode access in the formal part.

package T ADT s
type ("_State is tagged private:
procedure PC" (1" - in ¢ _State] :
private
type (_State s ...
end (_ADT;

with BLADT
C_ADT

use B_ADT,
C.ADT

package FullLC.ADT is
type Full_C_State is new (_State with private;
type Full_C_Ptr is access Full_C_State ;
procedure P (VC :in FullC_Statej ;
procedure Create (VO :inout Full. C_Ptr):
procedure Destroy (V2 :inout Full_ C_Ptr) ;

private
type Full.C_State is new ("_State with
record
VB . Full.B_State
end record ;

end FullC_ADT .

5 The Player Partition in Ada9x

We can now turn to the translation of the elements of the game, particularly the partition
Player with its “withed” package Boards.

The first is the partition unit itself. The interface is converted to an ADT as follows:

with Referee. ADT ,
Shared_Types ;
use Shared_Types.ADT ;

17

package Player_ \DT is

-- Player simulates the behaviour of a player. After having
-- 1ts environment variables set up (through the initialisation
-~ parameters), it thinks and plays until the game is over.

type Player_state is private:
-- Create simulates the operator new for the partition
-- creation and supports the initialisation parameters.
-- must abort the task instance as well as free storage.
procedure C'reate
{P :inout Player:
A_Referee : in Referee_ ADT. Referee
A Turn :in T.Turnj :
-~ Destroy provides the complementary operation to Create.
procedure Destroy (P :in out Playery :
private
task type Life_Type is
-- An extra entry is added to give this task access
- to the state of a Player’s instance. The entry will
-- be called by the Create operation.
entry Set_Initial (P :in Player)
end Life. [ype :

type Player_sState is
record
-— State variables derived from the body of the Player partition.
The_Referee @ Referee_ADT. Referee :
My_-Turn : T_Turn ;
T Life_Type :
end record ;
end Player_.ADT :

The task body and the bodies of the operations Create and Destroy cannot be given yet.
as they depend on the package Boards. whose operations they use. Thus next we provide the
translation into an ADT of the package Boards. This ADT provides state and operations which
will be used by the Player in executing its ~life” task, so the package Boards_.\DT must be
compiled before the definition of the plaver bodyv.

with Shared_Types ;
use Shared_Types :
package Boards_.ADT is

-- This package provides the player with an instance of the board type:
-- In this he maintains a record of all he has learned of his

-- opponents’ ship arrangement. This package also provides the

-- operation to construct the player’s own battle arrangement

-- to send to the referee. Alsoc the operations to actually conduct

-- the game by selecting a move and recording the result.

type Boards is private;

-~ Definition by the user (the player) of his/her ships’

-=- arrangement in the player’s board.
procedure User_Definstion (B :in out Boards; The_Board : out T.Board) ;

-~ Operations based on the player’s view of his/her opponent board.
procedure [nit_Opponent (B :in out Boards) ;

18

i

procedure U'pdate (B - in out Boards: Tried_Move : in T_Move : Result . in T_Resuit) :
procedure Choose_Move (B :inout Boards: The_Move = out T_Move;:
private
type Boards is
record
Opponent_Beoard | -- as defined in the body of the AdaPT package Hoards.
end record :
-~ This is the state record for board instances.
end Boards_ADT

[t should be noted rhat the Boards tvpe exported by Boards_ADT is a normal tvpe and not an
access tvpe. The latter is only necessary to provide the effect of a partition. with its dvnamic
creation and capability of run-time switching. The access type references the aggregated state
records as is shown in the package Full_Player_ADT helow.

The extended plaver partition which represents the full partition with its associated package
Boards is now given: it inherits its parent Player_1DT and enriches its state with the state of

the Boards . ADT.

with Referee. ADT. Player_ ADT. Boards_,ADT .
shared. Types :

use Referee . ADT. Player . ADT. Boards_ADT
~hared_Types :

package Full_Player_ 1DT is

-- Player simulates the behaviour of a player. After having
-- its environment variables set up (through the initialisation
-- parameters), it thinks and plays until the game is over.

type Full_Player_>tate is new Player_state with private;
type Player is access Full_Player_State with private;
-- Create simulates the operator new for the partition
-- creation and supports the initialisation parameters.
procedure Create
(P :inout Player;
A_Referee @ in Referee_ ADT.Referee ;
ATurn o in T_Turnj ;
-~ Destroy provides the complementary operation to Create.
procedure Destroy (7 ©in out Playerj ;
private
type Full_Player_State is new Player_State with
record
-- Aggregates State variables of Player with those of Board.
B : Boards./ADT.Boards ;
end record ;
end Player_ ADT ;

Finally, the bodies of the packages Player_ADT and Full_Player_ADT can be given. The
task which defines the life makes reference to the Boards data structures which now form part
of the Full_ Player_A DT, which they can access in the state record. To make that possible it is
necessary to pass a reference to that state record to the task at the Create time. Provision for
this was made by providing a suitable entry in the task type Life_type.

19

!
|

with Boards . ADT -
package body Full_Player ADT is
task body Life_type is
e : Player :
begin
accept Set-Initwal{P: Player) do
Me ;= P
end
...€LC.-=- illustrates how the task can access the state record
end Life_type :
end full Player . ADT

We should add that we do not necessarily consider that this structure is "good” Ada9x. .\
programmer forming an Ada9x program component with these properties directly would arrive
at exactly this structure,

3.1 Polymorphic types and conformant partitions

[n section 4.2 we drew attention to the difficulty of constructing conformant partitions in
Adas3 in view of the strong tvping rules of the language. Ada9x supports a controlled degree
ol polymorphism. which can be utilised to make provision for conformance. First we continue
the schematic forms used in the previous section to describe a prototvpical partition B and a
conformant partition C'B. In AdaPT these would be specified:

partition B3 1s
procedure PB ;
end B

partition (' s B ;

In rthe following we present a possible Ada9x program for the same purpose. [owever. 1o
provide the polvmorphic type, it is necessary first to define an empty {fully abstract) tagged
tvpe, and derive two different implementations from it. The following is a possible outline.

First we have a fully abstract definition of a type Empty_State with an operation over it. PB.
There is no body to this package, since neither object is further defined. The package exports an
access type for referencing instances of the tagged state record. Since this is defined to be a class
pointer. it is permitted to reference all descendents of Empty_State in the derivation hierarchy.
Tagged tvpes carry a “tag” which permits run-time recognition of the current variant®.

*Note: we have remarked in reports on the Ada83 translation that the AdaPT conformant partition has a
problem that the overheads of providing for possible conformance is carried by all types, because there is no
syntactic recognition of types which may have conformant peers. Limiting the polymorphism to tagged types
avoids this difficulty in Ada9x.

20

{l

{

package Abstract B is
type Empty_sState is tagged
record
null;
end record ;
-— The type exported is to be polymorphic to reference items
-- of the type and any derived type.
type (lass_Ptr is access Empty_State ('L ASS ;
procedure PB (1'B : access Empty_State) is <>:
end Abstract_B ;

This is followed by two alternative packages. inheriting the same tagged tvpe and extending i
in each of two different wavs.

with Abstract.B ;
package B_ADT is
type B.State is new Abstract_B.Empty_State with private:
type B_Ptr is access B_State ;
procedure PB (VB - access B_State) :
function Create return £_Ptr -
procedure Destroy (VB - in out B_Ptr);

private
type B._State is new Abstract_B.Empty_State with
record
-- State required by the implementation of B.
end record ;
end B.ADT .

with Abstract B
package CB_ADT is
type ("B_State is new Abstract.B. Empty_State with private;
type ('B_Ptr is access CB_State :
procedure PB (VB : access (‘B_State) ;
function Create return ('B_Ptr ;
procedure Destroy (VB :inout CB_Ptr) ;

private
type ('B_State is new Abstract.B.Empty_State with
record
-- State required by the implementation of C'B.
end record ;
end CB_ADT ;

The following is a fragment of code showing how this tvpe would be used by a client.

VB : Abstract_B.Class_Ptr :

begin
VB := B_ADT.Create ;
Abstract. B.PB (VB); -- A call to B.ADT.PB.
VB := CB_ADT. Create :
Abstract.B.PB (VB); -- A call to CB_ADT.PB.
end ;

21

Though rather verbose. we find this solution quite pleasing’.

\We now present the case of the conformant plavers introduced earlier in the same stvle:

package .bstract_Player is

-- This is an abstract definition of Player’s interface that
-- defines a universal type representing the partition and
-- the abstract operations which cannot be called and do not
-- require a bodies.

type Untv_Player is tagged
record

null;

end record ;

type Class_Player_Ptr is access Player ("LASS :

end Abstract.Player

vith Referee . ADT .

~Nhared_Types .
Abstract. Player

use Shared_Types ;
package Player_Impl is

-- Full definition of Player’s interface.
type Player is new Abstract_Player. ('niv_Player with private;
type Player_Ptr is access Player ;
function Create
(A_Referee . Referee_ADT.Referee ;
A_Turn : T_Turn; return Player_Ptr ;
procedure Destroy (P :in out Player_Ptr) ;

private

type Player is new Abstract_Player. Univ_Player with
record
-- Declaration of state corresponding to this particular
-- 1lmplementation of a partition Player.
end record ;

end Player_Impl ;

with Referee.ADT ,

Shared_Types ,
Abstract_Player ;

use Shared_Types ;
package Auto_Player_Impl is

-- Full definition of Player’s interface.
type Auto_Player is new Abstract_Player. Univ_Player with private;
type Auto_Player_Ptr is access Auto_Player ;
function Create
(A_Referee : Referee_ADT.Referee ;
A-Turn : T_Turn) return Auto_Player_Ptr
procedure Destroy (P :in out Auto_Player_Ptr) ;

>We would like to acknowledge the help of Offer Pazy of mapping team, in checking that this solution is

indeed along the right lines

22

o

{

(|

private
tvpe Auto_Player is new Abstract_Player. Univ_Player with
record
-- Declaration of state corresponding to this particular
-- implementation of a partition Player.
end record ;
end duto.Player_Impl :

And in the creating node. the following code could be found:
A.Player © Abstract_Player.Class_Player_Ptr :

begin
A_Player 1= Player_Impl.Create (.A_referee . A_Turn) :
-- the current player refers to a human player.
A Player 1= Auto_Player_{mpl.Create((A_referee . _Turn) :
-- the current player refers to an automatic player.
=nd :

5.2 The node in Ada9x

Having constructed types whose instances constitute the virtual nodes of a distributable pro-
gram in Ada9x®. they can now be assembled into one or more “supertvpes’ whose instances
form the nodes of the program. Here is the outline of the type which encompasses all three
units. as did the example of the AdaPT node above.

The treatment is exactly like that of the partition: the node is presented as an ADT
exporting an access type, and whose state is a record containing instance variables for each of
the component partitions. These are instantiated by the create operation of the node. calling
the respective create operations of the partitions. Destrov works in a similar wav.

package Nodel ADT is
type Nodel is private;
procedure Create (M :inout Nodel);
procedure Destroy (M :in out Nodel};
private
type State ;
type Nodel is access State ;
end Nodel ADT ;

with Referee. ADT ,
Player ADT |

“\We should emphasise again that this is a program to implement the AdaPT concepts in Ada9x. It is not
necessarily the way in which the same problem would be solved in the current mapping.

23

AdaPT.Types .
~hared_Types .
UNCHECKED.DEALLOCATION
use Shared_Types :
package body Vode! A\DT is

type State is

recora
The_Referee : Referee_ADT. Referee ;
Playert
Player2 : Player_ADT.Player :

end record :

procedure C'reate (I in out Nodel) is
begin
M = new State:
Referee_ADT.C'reate (M.The_Referee) ;
Player ADT.Create (M.Player! . M.The_Referee , Turnt) :
Player_ ADT.Create (M. Player2 , M.The.Referee . Turn?) ;
exception
when others =>raise AdaPT_Types. NODE_ERROR

end Create ;

procedure Destroy (M :in out Nodel) is
procedure free 1s new UNCHECKED_DEALLOCATION
(State . Nodel) ;
begin
Referee A\ DT.Destroy (M. The_Referee) :
Player ADT.Destroy (M.Playert) ;
Player ADT.Destroy (M.Player2) ;
end Destroy ;

end Node! ADT :

As we saw before. the difference between a partition and a node lies in the presence or

absence of a main procedure. The following is the main procedure required to make this node
executable.

with Nodel_ADT .
procedure Main is

An_Instance ¢ Nodel_ADT.Nodel ;
begin

Nodel_ADT.Create (An_Instance) ;
end Main;

After creating the instance of the state record, the procedure becomes completed. but does
not return until all active partitions generated by the creation are terminated.

6 Forming a Distributed System

Within an application, a node is to become the code from which a binary load module can be
generated for allocation to a particular machine. To conform with Ada’s requirements, it must

24

have the form of a procedure. When there are several nodes. to become binaries for allocation
on different machines in a network. the transformation into Ada introduces the following new
problems:

e identifier.
e node creation.

e remote communication.

6.1 System-wide Identifier

In \daPT, partitions and nodes define access types. To call an operation exported by a
partition or a node instance the caller must use a reference to the instance.

1t Referce := new Referee PARTITION ;
begin
R.Copy_Board {A_Player. .A_Board) :

end ;

Until now, in the transformation of partitions and nodes into Ada 9X (as well as into AdaR3).
this reference has been implemented using an Ada access type.

with Shared_Types ;

use Shared.Types ;

package Referee . ADT s
Referee s private;

procedure Copy_Board (Owner :in T_Turn; Board : in T_Board) :

private

type Referce_State ;

type Referee is access Referee_State ;
end Referee_ADT ;

As partition and node instances may be located for execution on different nodes of a network.
the use of an Ada access type to refer to these partition or node instances is insufficient. In a
networking environment, an Ada access object only makes sense if it is related to the machine
whose storage space it addresses. Therefore, in the transformation of partitions and nodes into
Ada 9X, the ADT’s type must be extended adding a node identifier (i.e. program and machine
identifiers).

25

with Shared_ Types :
AdaPT _Types .
use Shared_Types :
package Referee.ADT is
Referee_Ptr is private;
type Referee is
record
Node_ID : AdaPT.Types. T_Node_ID :
Reference : Referee_Ptr :
end record ;

procedure Copy_Board (Owner :in T_Turn; Board : in T_.Board) :

procedure Create (R :in out Referee) :
procedure Destroy (R :in out Referee) :

private

type Referee_State ;

type Referee_Ptr is access Referee_State :
end Referee_ ADT ;

For the declaration of Node_fD. a new type T_Node_ID is specified in
AdaPT _Types.

package AdaPT_Types is

type T_Node_ID is
record
Process_ID
Host [D : NATURAL ;
end record ;

-- AdaPT’s predefined exceptions.

Site_Error | -- Node name does not exist.

Node_Inaccessible , -- Node is not available.

Node_Error . -- Node elaboration cannot be completed.
Partition_Error -- Partition elaboration cannot be completed.
Remote_Call_Error , -~ Error during timed REC.

-— Other communication errors.
Communication_failure exception;

end AdaPT._Types ;

The component Node_ID of Referee can be initialised at creation time (e.g. by calling the
UNIX services to get a process identifier and a host identifier). Once a Referee’s instance has
been created, Vode_ID and Reference provide a “system-wide identifier” for the instance.

System-wide identifiers are necessary for nodes instances as well as for partition instances

because both can be remotely referenced.

We note that after this modification the type Referee is no longer a private type. This
allows the comparison of the Node_ID of different nodes or partitions to determine whether a

call is remote or local.

26

{

{

n
i

{

if Self. NodeID = R.Node_ID then
-~ Local call to RA.
R.Copy_Board (Self. My_Board} ;
else

-- Remote call to f.
end if :

In principle. the non-privacy of Referee in Referee_1DT's specification should not lead to
any misuse because all this code should be produced by an automatic transformation tool.

[n the case of conformant partitions. the transtormation into Adas3 defines a common tvpe
(e.g. ['niversal_Referee. Partition) for the instantiation of any conformant partition. This tvpe
specifies an identifier of the kind of partition inside the conformance set (i.e. Selector) and a
reference to the partition instance itself (i.e. Reference). In a distributed environment. this
reference must be converted into a system-wide identifier by adding a new component Vode_[D.

package (‘niversal_Referce is
type Partition :
type [_Reference is access Partition ;

type Partition is
record
Selector : NATURAL ;
Node_ID : 1daPT_Types.T_Node [D
Reference : T_Reference .
-- The type used for the declaration of Reference
—-- could be any dummy access type.
end record ;

{'ndefined_Selector : crception ;

end Uniwversal_Buffer :

6.2 Node Creation

AdaPT differentiates two kinds of nodes, distinguished and non-distinguished. In any AdaPT's
system, the designer must define a distinguished node which will be the starting point for the
system's elaboration. This node is started by the operating system when a user runs the system.
To get the same effect in Ada 9X, we need to declare a procedure as a main program for the
distinguished node.

with Node! ADT ;
procedure Main_Nodel is

N1 . Nodel ADT.Nodel ;
begin

Nodet_ADT.Create (N1);
end Main_Nodel ;

{

i
L

]

l

The non-distinguished nodes are nodes remotely created by other svstem's nodes. In the
creation statement the location for the new node can be specified (by default it is the current
machine]. A nonexistent location must raise predefined AdaPT exception SITE.ERROR. The
creator node has to wait until the creation is finished {i.e when a reference to the created node
is returned). In our example. Node/ creates Node .

N2 0 Node2 1= new Node2 'NODE (A _Network.Location) (B) :

[n a sense the creation of a node instance can be understood as a function call which returns
areference to the node instance created. Therefore. we could use an Ada function to implement
the main program for Vode2. .\ simplified version of such function is shown below.

with Node2_ ADT .
Buffer ADT .
AdaPT_Types :

function Main_Node2 (R : Referee_ A DT.Referee) return Node2 ADT. Nade2 is
N2 Node2 ADT. Node 2 ;

begin
Node2_ ADT.Create (N2 . R):
return V2 ;

end Mamnm_Node2 ;

In principle. this solution should work. As V2 contains a task instance. even if the main
function finishes and returns the reference, the program would run until that task terminates. In
practice. to make the programs portable. a more complex solution is required due to constraints
imposed by UNIX (e.g. a command cannot return a result until its execution is finished). by
Ada compilers (e.g. full support of functions as main programs) and by the possible raising of
an exception that must be propagated over the network.

with Yode2_ ADT .
Referee . ADT
AdaPT_Types ,

use AdaPT.Types ;
procedure Main_Node2 is

procedure Get.Arguments (Creator_ID : out Node.ID ; R - out Referee_ADT. Referee) is
—-- It gets from the command line Creator_ID and R.

procedure Return_Reference (To : in Node_ID ; Ref : in Node2_ ADT.Node2) is
-- Sends the reference to the node specified.

procedure Return_Node_Error (To : in Node.ID) ;
-- Sends the exception NODE ERROR to the node specified.

Creator.ID : Node_ID ;
The_Referee : Referee A DT.Referee ;
N2 ¢ Node2_ ADT.Node2 :

28

1

(.

begin

Ciet. Arquments {Creator.ID . The_Referee) .

Node2 ADT.Create (N2 . The_Referee) :

Return_Reference (Creator.[D . N2) :
exception

when YNODE_ERROR => Return_Node_Error ((reator_[D) ;
end MVain.Node2 ;

A similar procedure must be defined for every non-distinguished node in the system.

As for the creator node (e.g. Node!). the creation of a non-distinguished node in Ada 9N
involves the following steps:

e to check whether the location specified is correct. raising the exception SITE_LERROR in
the last case,

e 10 fetch the code corresponding 1o the Ada program generated from the definition in
AdaPT of the node (e.g. Main_Node? from Node?2),

s 1o copv and to start this code on the specified network node
il.e. A_Network_Location).

o 1o wait for the result of the creation (i.e the reference to the node instance created or an
exception).

2\ new package AdaPT_System can be defined to provide these services.

with AdaPT.Types
Node2 ADT .
Referee . ADT |

use AdaPT Types ;
package .1daPT_System s

-- T_Location is an enumerate type that lists the names
-~ of the network nodes availables in the system.
type T_Location is ..

function Get.Node_ID return T_Node ID ;
function Create.Node2
(Creator.{D :in T_Node_ID ;
Location : in T.Location;
R :in Referee_ADT.Referee) return Node2. ADT.Node2 ;
-= It creates an instance of Node2 on the location
-- specified returning a reference to the instance. It
-- may raise the following exceptions:
-- SITE_.ERROR when the location doesn’t exist,
-- NODE_ERROR when an elaboration error occurs during
-- the node creation,
-- COMMUNICATION_ERROR when there is a network

-- communication error.

29

end AdaPT_System :

AdaPT_System could provide a creation function for every non-distinguished node tvpe
defined in the svstem. We note that T_Location is declared here instead of in AdaPT.Types
because it requires information about the specific AdaPT’s system under transtormation.

In its Create procedure. Node! will call AdaPT_System.Create_Node? for the remote creation
of a NodeZ's instance.

with CNCHECKED . DEALLOCATION |
AdaPT_System :
package body Node1_ADT is

procedure Create (NI : in out Nodel) is
begin
Nt Node D = \daPT_System.Get_Node_ D :
N1.Reference 1= new Nodel_State ;
-- Local creation of a feferee’s instance.
Referee ADT. Create (N1 Reference.B) .
-- Local creation of a Player’s instance passing a
-- Referee’s reference.
Full_Player_ADT.Create (NI Reference.P . N1.Reference.R);
-- Remote creation of a Node2’s instance on
-= A_Network_Location,
N1 Reference.N2 = AdaPT_System.Create_Node2
(N1.Node ID . A_Network.Location . N1.Reference.Rl) ;
exception

when others =>raise AdaPT_Types. NODE_ERROR ;
end Create ;

end Nodel_ADT:

6.3 Remote Communication

In itself the implementation of remote communication for Ada programs is not a new topic.
The issues associated with remote procedure calls (RPC) and remote entry calls (REC) have
been already widely studied in many projects. In our translation of AdaPT into Ada 9X, we
have simply reused the main ideas of [DIADEM] which defines a “source-level” approach 7 that
suits very well the transformation strategy followed until now. In this approach, a distinction is
established between a transport layer which provides a standard communication interface and
a remote rendezvous layer which builds the RPC and REC on top of the transport layer®. For

"The code for supporting the remote communication is introduced by a transformation tool.
® Roughly speaking, the rendezvous layer corresponds to the ISO’s session and presentation layers.

30

A more complete discussion of remote communication in translated AdaPT programs. please
refer to the extended R3 report.

6.4 Distribution

In the battleships example, the three partitions were composed into a single program hv con-
structing a node with instances of each. and calling the appropriate procedures to interconnect
them. This node will then be used to generate an executable binary.

[t is equally possible to construct a distributed program by forming two or more nodes.
and configuring the partitions appropriately between them. These then form a collection of
executables for execution of different nodes in the network. Details of the wav in which such
node images are allocated to machines can be found in the papers on AdaPT. while details of
rhe communications mechanisms were discussed in detail in report R3.

7 Conclusions

The solution proposed here. based on a natural translation of the AdaPT concepts into Ada9x.
does not match the approach proposed by the mapping team for distribution. Their solution
has packages, called Remote Communication Interface (RCI) Packages which roughly serve in
the role of our partitions. These are static units. and non-replicatable. Our use of data tvpes
as partition types is more dynamic. but may be less secure. being heavily dependent on the use
of access variables.

We believe that our scheme of transforming AdaPT to Ada9x using ADTs shows that
the use of data types as partitions. permitting inheritance to play a major role in designing
distributed applications. makes a natural synthesis of these important parts of the language .
At the present time. we feel that the elegance of making a coherent integration of the language
in respect of the Object Oriented aspects. with derived tvpes. and the distribution aspects is
very attractive. and think it deserves careful consideration before the language is frozen with
the version presently proposed. We therefore suggest that further careful study is justified to
decide how the distribution aspects can best be married with the data typing.

In a later report we expect to make a critical comparison of the two styles. and make our
recommendations.

31

